

(Accredited by NAAC with 'A' Grade)

Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521456.

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE OUTCOMES (COs)

Course Outcomes (COs) describe what students can able to do after completion of the course.

Program B.Tech- Mechanical Engineering	Academic Year 2023-24	Semester &
---	--------------------------	-----------------

S.No	Year- Sem	Course Code	Course Name	Course Outcomes After completion of the course student can able to
			-	CO1:Interpret the physical meaning of different operators such as gradient, curl and divergence
				CO2:Estimate the work done against a field, circulation and flux using vector calculus
1	11-1	BSC-5	Vector Calculus, Fourier Transforms	CO3:Apply the Laplace transform for solving differential equations
			And PDE (M-III)	CO4:Find or compute the Fourier series of periodic signals
			v	CO5: I expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms. Identify solution methods for partial differential equations that model physical processes
				CO1: Model &Analyze the behavior of basic structural members subjected to various loading and support conditions based on principles of equilibrium
2	11-1	PCC-I	Mechanics Of Solids	CO2: Understand then apply the concept of stress and strain to analyze and design structural members and machine parts under axial, shear and bending loads, moment and tensional moment.
			*	CO3: Analyze beams and draw correct and complete shear and bending moment diagrams for beams.
				CO4: understanding of the loads, stresses, and strains acting on a structure and their relations in the elastic behavior.
				CO5: Design and analysis of Industrial

(Accredited by NAAC with 'A' Grade)

				(177, 17)dydwddd, AMARAVATT-321436.
				components like pressure vessels.
3	11-1	PCC-2	Fluid Mechanics & Hydraulic Machines	CO4: Calculate Hydrodynamic forces of jet on vanes in different positions.CO5: Explain Working Principles and Evaluate performance of hydraulic pump and
-			· ·	turbines.
4	11-1	PCC-3	Production Technology	CO1:Able to design the patterns and core boxes for metal casting processes CO2: Able to design the gating system for different metallic components CO3:Know the different types of manufacturing processes CO4:Be able to use forging, extrusion processes CO5:Learn about the different types of welding processes used for special fabrication
5	11-1	PCC-4	Kinematics Of Machinery	CO1: Contrive a mechanism for a given plane motion with single degree of freedom. CO2: Suggest and analyze a mechanism for a given straight line motion and automobile steering motion. CO3: Analyze the motion (velocity and acceleration) of a plane mechanism. CO4: Suggest and analyze mechanisms for a prescribed intermittent motion like opening and closing of IC engine valves etc. CO5: Select a power transmission system for a given application and analyze motion of
6	11-1	PCC-L1	Computer Aided Engineering Drawing Practice	different transmission systems CO1: Student get exposed on working of sheet metal with help of development of surfaces CO2: Student understands how to know the hidden details of machine components with the help of sections and interpenetrations of

(Accredited by NAAC with 'A' Grade)

			+	solids.
			*	CO3:Student shall exposed to modeling commands for generating 2D and 3D objects using computer aided drafting tools which are useful to create machine elements for computer aided analysis.
7	11-1	PCC-L2	Fluid Mechanics & Hydraulic Machines Lab	CO1: Understand the principles of kinematics with specific emphasis on application of continuity equation, stream function etc. CO2: Apply the principles of Bernoulli's equation in measurement of discharge in pipes, and in other pipe flow problems. CO3: Understand the working principle of pumps and turbines.
8	11-1	PCC-L3	Production Technology Lab	CO1: The student will be able to develop simplified manufacturing processes with the aim of reduction of cost and manpower. CO2: The student will be able to identify/control the appropriate process parameters, and possible defects of manufacturing processes so as to remove them. CO3: Operate arc welding, gas welding and resistance welding equipment
9	11-1	SOC-1	Drafting And Modeling Lab	CO1: Understand the benefits of computer aided design CO2: Understand the computer aided manufacturing of machine elements. CO3: Students learn modeling 3d Drawings
10	11-1	MC-3	Essence Of Indian Traditional Knowledge	CO1; Understand the concept of Traditional knowledge and its importance CO2: Know the need and importance of protecting traditional knowledge CO3: Know the various enactments related to the protection of traditional knowledge CO4: Understand the concepts of Intellectual property to protect the traditional knowledge
11	11-11	ESC-6	Materials Science & Metallurgy	CO1: Understand the crystalline structure of different metals and study the stability of phases in different alloy systems.

(Accredited by NAAC with 'A' Grade)

			() is recomming to	mam (M), Vijayawada, AMARAVATI-521456.
				CO2:Study the behavior of ferrous and non- ferrous metals and alloys and their application in different domains CO3:Able to understand the effect of heat
				properties of ferrous metals
			-	CO4:Grasp the method s of making of metal powders and applications of powder metallurgy
				CO5: Comprehend the properties and applications of ceramic, composites and other advanced methods.
			*	CO1:Apply various functions in order to determine whether a given continuous function is analytic
				CO2:Find the differentiation and integration of complex functions used in engineering problems
12	11-11	BSC-6	Complex Variables And Statistical Methods	CO4: Apply discrete and continuous probability distributions, design the
			-	components of a classical hypothesis test CO5:Infer the statistical inferential methods based on small and large sampling tests
				transmission of mechanical systems
				CO2: Analyze dynamic force analysis of slider crank mechanism and design of flywheel.
13	11-11	PCC-5	Dynamics Of Machinery	CO3:Explain different types of governors involved in dynamics of Machinery CO4:Understand balancing of reciprocating
				and rotary masses
				CO5: Determine the Vibrations developed in beams with concentrated and distributed loads. Dunkerly's methods, Raleigh's method, torsion vibrations.
14	11-11	PCC-6	Thermal Engineering - I	CO1: Derive the actual cycle from fuel-air cycle and air- standard cycle for all practical applications.

(Accredited by NAAC with 'A' Grade)

				, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
				CO2:Explain working principle and various components of IC engine CO3: Explain combustion phenomenon of CI and SI engines and their impact on engine variables. CO4: Analyze the performance of an IC engine based on the performance parameters. CO5: Explain the cycles and systems of a gas turbine and determine the efficiency of gas turbine.
				CO1:Design and conduct experiments, analyze, interpret data and synthesize valid conclusions CO2:Design a system, component, or
15	11-11	HSC-2	Industrial Engineering And Management	CO3:Use the techniques, skills, and modern engineering tools necessary for engineering practice with appropriate considerations for public health and safety, cultural, societal, and environmental constraints
				CO4:Function effectively within multi- disciplinary teams and understand the fundamental precepts of effective project management
				CO5: Evaluate the valuation of building for different specifications and create new technologies to develop concrete estimating methods.
16	11-11	ESC-L4	Mechanics Of Solids And Metallurgy Lab	CO1: Study of the Micro Structures of Cast Irons. CO2: Study of the Micro Structures of Non-Ferrous alloys.
			0,	CO3: Study of the Micro structures of Heat treated steels.
				CO1. Draw and represent standard dimensions of different mechanical fasteners and joints and Couplings.
17	11-11	PCC-L6	Machine Drawing Practice	CO2. Draw different types of bearings showing different components. CO3. Assemble components of a machine
				part and draw the sectional assembly

(Accredited by NAAC with 'A' Grade)

	x			2	drawing showing the dimensions of all the components of the assembly as per bill of materials
1.					CO4. Select and represent fits and geometrical form of different mating parts in assembly drawings.
					CO5: To prepare manufacturing drawings indicating fits, tolerances, surface finish and surface treatment requirements.
					CO1: To study the static and dynamic balancing using rigid blocks.
	18	11-11	PCC-L7	Theory Of Machines	, velocity ratio and efficiency
-					CO3: To study various types of gears- Spur, Helical, Worm and Bevel Gears
				Do the condition	CO1: Solve the different methods for linear, non-linear and differential equations CO2: Learn the PYTHON Programming
	19	11-11	SOC-2	Python Programming Lab	CO3: Familiar with the strings and matrices in PYTHON
					CO4: Write the Program scripts and functions in PYTHON to solve the methods
					CO1: To understand the basic concepts of thermal engineering and boilers.
					CO2: To gain knowledge about the concepts of steam nozzles and steam turbines.
	20	111-1	PCC-7	Thermal Engineering- II	CO3: To gain knowledge about the concepts of reaction turbine and steam condensers.
					CO4: To understand the concepts of reciprocating and rotary type of compressors.
					CO5: To acquire knowledge about the centrifugal and axial flow compressors.
2.5	21	111-1	II-I PCC-8		CO1: To understand the materials and their properties along with manufacturing considerations.
	-	11171			CO2: To gain knowledge about the strength of machine elements. CO3: To understand and apply the
					knowledge in designing the riveted and
					o is me fiveted and

(Accredited by NAAC with 'A' Grade)

				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				welded joints, keys, cotters and knuckle joints
			v	CO4: To understand and apply the knowledge in designing the shafts and shaft couplings.
				CO5: To understand and apply the knowledge in designing the shafts and shaft couplings.
				CO1:To gain fundamental knowledge of machining processes
			v	CO2: To understand the principles of lathe, shaping, slotting and planning machines.
22	111-1	PCC-9	Machining, Machine Tools & Metrology	drilling, milling and boring processes.
				CO4: To understand the concepts of finishing processes and the system of limits and fits
				CO5:To gain knowledge about the concepts of surface roughness and optical measuring instruments
				CO1: To demonstrate the importance of solar energy collection and storage.
				CO2: To understand the principles of wind energy and biomass energy.
23	111-1	OE-1	Sustainable Energy Technologies	CO3: To gain knowledge on geothermal and ocean energy.
			,	CO4: To acquire knowledge about energy efficient systems.
				CO5: To understand the concepts of green manufacturing systems.
				CO1: To gain knowledge about the metals and alloys and their utility in different environments.
				CO2: To acquire knowledge about polymers and ceramics and their applications.
24	111-1	PE-1	Advanced Materials	CO3: To analyze composite materials along with reinforcements and their applications
				memory alloys and functionally graded materials.
				CO5: To gain knowledge about the nanomaterials and their applications.
25	111-1	PCC-L6	Machine Tools Lab	and their applications

(Accredited by NAAC with 'A' Grade)

				machine tools in the machine shop.
				CO2: To demonstrate various operations on lathe machine.
			V	CO3: To demonstrate different operations on drilling machine.
26	111-1	PCC-L7	Thermal Engineering Lab	apparatus. CO3: To determine engine friction, heat
				of petrol and diesel engines.
27	111-1	SOC-3	Advanced Communication Skills Lab	CO1:To improve students' fluency in spoken English CO2:To enable them to listen to English spoken at normal conversational speed
				vocabulary
28	111-1	MC – 4	Professional Ethics and Human Values	CO1:To understand the concepts of human values. CO2:To gain knowledge about the principles of engineering ethics. CO3:To interpret engineering as social
			V	experimentation.
29	111-11	PCC-10	Heat Transfer	CO1: Compute rate of heat transfer for 1D, steady state composite systems without heat generation. CO2: Analyze the system with heat generation, variable thermal conductivity, fins and 1D transient conduction heat transfer problems. CO3: Develop the empirical equations for forced convection problems by using Buckingham's pi theorem. CO4: Compute the rate of heat transfer for natural convection systems and design and analysis of heat exchangers. CO5: Solve the heat transfer systems with phase change and radiation.

(Accredited by NAAC with 'A' Grade)

				11. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
30	111-11	PCC-11	Design of Machine Members-II	CO1: Apply knowledge about the design of bearings. CO2: Explain the concepts in designing various engine parts. CO3: Utilize the knowledge to design curved beams and power screws. CO4: Justify power transmission systems and to design pulleys and gear drives. CO5: Apply the concepts in designing various machine tool elements.
31	111-11	PCC-12	Introduction to Artificial Intelligence and Machine Learning	CO1: Discuss basic concepts of artificial intelligence, neural networks and genetic algorithms. CO2: Apply the principles of knowledge representation and reasoning.
32	111-11	PE-2	AUTOMOBILE ENGINEERING	CO1: Discuss various components of four wheeler automobile. CO2: Apply the knowledge of different parts of transmission system. CO3:Judge about steering and suspension systems. CO4:Justify the braking system and electrical system used in automobiles. CO5:Analyze the concepts about engine specifications and service, safety and electronic system used in automobiles.
33	111-11	OE-2	WATER RESOURCES ENGINEERING	CO1: Have a thorough understanding of the theories and principles governing the hydrologic processes. CO2: Be able to quantify hydrologic components and apply concepts in hydrologic design of water resources projects. CO3: Develop Intensity-Duration-Frequency and Depth-Area Duration curves to design

(Accredited by NAAC with 'A' Grade)

				hydraulic structures.
				CO4: Develop design storms and carry out frequency analysis.
				CO5: Develop flow mass curve and flow duration curve, apply hydrograph analysis in the design of water resources projects.
				CO1: The student should be able to evaluate the amount of heat exchange for plane
34	111-11	PCC-L8	Heat Transfer Lab	CO2: Evaluate cylindrical & spherical geometries
				CO3: to compare the performance of extended surfaces and heat exchangers
			-	CO1: The student will be able to appreciate the utility of the modeling tools in creating 2D and 3D drawings.
35	111-11	PCC-L9	CAE&CAM Lab	CO2: Use of these tools for any engineering and real time applications
				CO3: Acquire knowledge on utilizing these tools for a better project in their curriculum.
26			Measurements &	CO1: Demonstrate and use different length measuring instruments like vernier calipers and micrometers
36	111-11	II-II PCC-L10	Metrology Lab	CO2: Explain different angle measuring instrument like universal bevel protractor.
				CO3: Formulate some unknown quantity or parameter of engineering interest
27	111-11		Artificial Intelligence	C01: Building Decision Trees for Soybean classification model using Weka or Python CO2: Generating association rules on
37		SOC-4	and Machine Learning Lab	Weather data using Weka or Python
				CO3: Build Neural Network Classifier using Weka or Python
	111-11		Research	CO1: Understand objectives and characteristics of a research problem
38		MC-5	Methodology and IPR	CO2: Analyze research related information and to follow research ethics.
				CO3: Understand the types of intellectual property rights.
39	IV-I	PE-3	UNCONVENTIONAL MACHINING PROCESSES	CO1: Understand the concepts of modern machining processes.
			FROCESSES	CO2: Learn the principles of ultrasonic

(Accredited by NAAC with 'A' Grade)

			-	
			~	machining.
				CO3: Apply the principles and procedure of electro chemical and chemical machining processes.
				CO4: Apply the principles and procedure of thermal metal removal processes
				CO5: Illustrate the principles and procedure of electron beam machining, laser beam machining and plasma machining.
				CO1: Identify the different components of the steam power plant.
				CO2: Illustrate the component used in the diesel and gas power plant for power production
40	IV-I PE-4	Power Plant	CO3: Understand how the power is produced by hydro-electric and nuclear power plants	
			Engineering	CO4: Interpret the power production by combined power plants and operating principles of different instruments used in power plants.
				CO5: Analyze power plant economics and implementation of pollution standards and control of pollution caused by the power plants.
				CO1: Understand the use the various mechatronics systems, measurement systems, sensors and transducers.
				CO2: Apply the concepts of solid-state electronic devices.
41	IV-I	PE-5	MECHATRONICS	CO3: Identify the components in the design of electro mechanical systems.
				CO4: Apply the concepts of digital electronics & PLCs for control.
				CO5: Understand system interfacing, data acquisition and design of mechatronics systems.
42	IV-I	OE-3	ADDITIVE MANUFACTURING	CO1: Understand the principles of prototyping, classification of RP processes and liquid-based RP systems.
				CO2: Understand and apply different types

(Accredited by NAAC with 'A' Grade)

Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521456.

				of solid-based RP systems.
			*	CO3: Apply powder-based RP systems
				CO4: Analyze and apply various rapid tooling techniques.
				CO5: Understand different types of data formats and explore the applications of AM processes in various fields.
43	IV-I	OE-4	OPERATIONS MANAGEMENT	CO1: Apply the appropriate forecasting techniques & Aggregate planning methods
				CO2: Learn Materials management analysis and scheduling policies
				CO3: Learn about the inventory control techniques, MRP and contemporary management techniques.
				CO4: Apply quality management principles proposed by Taguachi, Juran & Demigs
				CO5: Apply optimization to LP model & transportation and assignment problems
44	IV-I	HSC-3	Universal Human Values:	CO1: Understanding the role of humans in society and nature
			Understanding	CO2: Developing a holistic perspective
			Harmony	CO3: Applying knowledge in different areas
45	IV-I	SOC-5	Mechatronics Lab	CO1: Develop PLC programs for control of traffic lights, water level, lifts and conveyor belts.
				CO2: Simulate and analyze PID controllers for a physical system using MATLAB.
				CO3: Develop pneumatic and hydraulic circuits using Automaton studio.
46	IV-II	PROJ	Project work	CO1: Demonstrate a sound technical
				knowledge of their selected project topic. CO2: Design engineering solutions to complex problems utilizing a systems approach
				CO3: Communicate with engineers and the community at large in written an oral form.

HOD

HOD ME R K COLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456.

R KCOLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456